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We examine the growth of entanglement under a quantum quench at point contacts of simple fractional
quantum Hall fluids and its relation with the measurement of local observables. Recently Klich and Levitov
proposed that the noise generated from a local quantum quench provides a measure of the entanglement
entropy. Their methods were specific to noninteracting electrons and the generalization to interacting systems
was left as an open question. In this work, we generalize their result to the Laughlin states. We investigate the
noise generated in the current along the edge of a fractional quantum Hall state at filling factors �=1 /m, when
a quantum point contact, initially closed, is fully opened at some initial time t0=0. We find that local quenching
in these systems gives time dependent correlation functions that have universal behavior on sufficiently long
time and length scales. We calculate the noise and full counting statistics for �=1 /m and find that in general,
the entanglement entropy and noise generated are unrelated quantities. We also discuss a generalization of this
problem to the critical quantum Ising spin chain.
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I. INTRODUCTION

Quantum impurity problems in 1+1 dimensions have
long been the subject of intense study due to numerous ap-
plications in fields such as quantum wires, the quantum Hall
effect and the Kondo problem. In particular, much research
has been invested into understanding the behavior of particle
transfer through an impurity and of growing interest experi-
mentally and theoretically are the statistics of the fluctuations
in the transferred charge. Most efforts have been concen-
trated on the shot noise which is sensitive to the quantization
of charge and can give useful information about the
system.1–6 In recent years, it was realized that the full count-
ing statistics, probability distribution P�q� of the transmitted
charge q in a given time window �t, contains more
information.7 Along with the shot noise, the full counting
statistics also contains information about the higher-order
correlations which are of interest experimentally. It has been
suggested that the third moment may give a more reliable
measure of the charge than the shot noise.8 Recent experi-
mental efforts suggest that the higher moments of the full
counting statistics may be accessible.9–12

In cases where Fermi liquid theory applies, the full count-
ing statistics has been studied extensively �see Ref. 13 for a
review�. Systems of strongly interacting electrons, though of
importance in 1+1 dimensional quantum wires, the quantum
Hall effect and Kondo problem have been less well studied.
Using advanced methods such as the thermodynamic Bethe
ansatz, for the Laughlin states exact results for the charge
current through an impurity,14 as well as the noise,15 the heat
current,16 and even attempts at the full counting statistics
were reported.17 Exploiting the power of boundary confor-
mal field theory, the full counting statistics in double quan-
tum dots was studied.18

A subject of recent interest is the behavior of quantum
entanglement, and in particular of the entanglement entropy,
in condensed matter systems �for a recent review see Ref.
19�. The entanglement entropy has been shown to exhibit
universal scaling behavior near quantum critical points.20–24

Universal scaling behavior of the entanglement entropy is
also present in topological phases of matter, such as frac-
tional quantum Hall fluids and their generalizations, as well
as in the related topological quantum field theories.25–27

However, the entanglement entropy of a macroscopic quan-
tum system is a highly nonlocal quantity which is difficult to
measure. It has remained a challenge to find an experimen-
tally viable protocol to measure the entanglement entropy.

Several recent results have suggested that the behavior of
point contacts in quantum critical systems and topological
phases, may offer a way to measure the entanglement en-
tropy. Fendley et al.28 showed that the change in the en-
tanglement entropy of topological FQH fluids at a point of
constriction is related �in fact the same� to the change of the
Affleck-Ludwig entropy29 of the coupled edge states of the
FQH fluid at the point contact. However, the Affleck-Ludwig
entropy itself is difficult to measure.

More recently, Klich and Levitov30 showed that, at least
for a system of free fermions, it may be possible to measure
the growth �in time� of the entanglement entropy upon a
quantum quench by monitoring the noise in the charge cur-
rent through the contact. Specifically, they proposed that the
second cumulant of the full counting statistics is related to
the entanglement entropy. They considered the following
protocol: first the two subsystems described by noninteract-
ing fermions lying on either side of an infinite strength im-
purity are completely decoupled. At time t0=0, the impurity
is removed and the subsystems are allowed to exchange par-
ticles. Finally at time t1, the impurity is reinstated and blocks
the flow of particles. They find that the shot noise generated
is given by

Snoise =
1

3
log

�t

�
, �1.1�

where � is some short-time cutoff.
Such a protocol is a suggestive procedure for measuring

the quantum entanglement between two halves of a system.
In the initial state the two subsystems lying on either side of
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the impurity are completely independent, but following the
quench, quantum entanglement is dynamically built up by
the exchange of particles with vanishing net flow. A measure
of the entanglement between the two subsystems is provided
by the entanglement entropy. The entanglement entropy for
such a scenario was recently calculated using conformal field
theory �CFT� and shown to increase logarithmically with
time, with a universal coefficient proportional to the central
charge c characterizing the CFT,31–33

Sent =
c

3
log

�t

a
, �1.2�

where a is a short distance cutoff. By comparing Eqs. �1.1�
and �1.2� and noting that for noninteracting fermions, the
central charge is c=1, it is quite suggestive that the noise is
a measurement of the entanglement. However, it should be
noted that while the methods of Calabrese and Cardy are
general, the results of Klich and Levitov are specific to non-
interacting electrons. The degree of general validity �e.g., for
interacting systems� of the Klich-Levitov protocol is pres-
ently an open question.

Recently there has also been a surge of interest in quan-
tum quenching, i.e., where the parameters that describe the
dynamics of the system are changed over a short period of
time either locally or globally. In cold atoms, it has been seen
experimentally that quantum quenches may show interesting
features.34–36 Theoretically, quantum quenching has also at-
tracted a good deal of attention in recent years.31,37–40 It was
found recently that in a global quench, where the eigenstate
state ��0� of a Hamiltonian H0 is evolved by a different
Hamiltonian H, the correlation functions were found to dis-
play universal behavior characteristic of the Hamiltonian H
if it was tuned near criticality.41

In this work, we study a local quantum quench where the
point contact between two �=1 /m fractional quantum Hall
states is instantaneously opened �see Fig. 1�. We examine the
noise and the full counting statistics and extend the results of
Klich and Levitov30 to a system of interacting electrons with
a dynamic impurity. No external bias is applied. Here the
bare strength of the impurity coupling undergoes a sudden
change between two values, the first corresponding to fully
reflecting boundary conditions and the second to fully trans-
mitting boundary conditions. The quantum point contact
�QPC� generates an effective impurity in the Luttinger liquid

description of the edge, thus allowing complete control over
the impurity strength by tuning the voltage applied to a side
gate. Such a system is therefore a promising candidate for an
experimental exploration of quantum quenches.

Our main result is that the second moment of the full
counting statistics, and therefore the noise, has a similar form
to the entanglement entropy. This result holds even for inter-
acting �Luttinger� systems. However, we also find that this
correspondence appears to be coincidental since, in general,
in addition to the noted dependence of the central charge, the
noise depends also on other universal quantities of the un-
derlying conformal field theory of the system. There is how-
ever a conceptual difference between static and dynamic en-
tanglement. Static entanglement refers to the measure of the
nonlocal correlations associated with the observation of a
part of the system without disturbing it and is encoded in the
von Neumann entanglement entropy. On the other hand,
when a physical system is changed, as in a quantum quench,
the ensuing dynamical entanglement measures the nonlocal
correlations that develop upon its time evolution in the
quenched system �see, e.g., Ref. 42�. At the computational
level, the main method underlying our results is the use of a
boundary condition changing operator to generate the transi-
tion between the fully closed QPC and the fully open one.
This transition is related to a change in the sign of the odd
boson density operator going through the QPC, thus is
marked by the appearance of an orbifold theory.

The method in its most general form will be described in
Sec. IV. In Secs. III and IV we describe the method for �
=1 /2 and 1/3. For the particular case of �=1 /2, the result
can be derived explicitly using a Majorana fermion represen-
tation for the refermionized Hamiltonian. Finally, in Sec.
IV B we calculate the noise and in IV C the full counting
statistics. In Sec. V we sketch the calculation of the noise of
the energy momentum in the quantum Ising chain, showing
that in contrast to the entanglement entropy in a 1+1 dimen-
sional critical system, the noise does not always grow loga-
rithmically. The details of the calculations for the Laughlin
�=1 /2 �bosonic� state are presented in Appendix A. The
modular S matrix and fusion rules for the orbifold CFT �used
in Sec. IV� are given in Appendix B. The relation between
the Schwinger-Keldysh formalism and entanglement entropy
is summarized in Appendix C.

II. DESCRIPTION OF THE MODEL

The Lagrangian describing the edge of the quantum Hall
effect for the Laughlin states at filling factors �=1 /m can be
written in the terms of left and right moving bosonic fields,
�L/R, in the form

L =
1

4�
�x�

L��t − �x��L −
1

4�
�x�

R��t + �x��R, �2.1�

where x� �−� ,�� and the velocity v of the edge was set to
one. For decoupled edges, the physical Hilbert space of each
chiral boson is generated by j, the U�1� current and the ver-
tex operator ei�g�L/R �see Refs. 43 and 44�. This vertex opera-
tor generates the charged excited states of the theory which
are fundamentally generated by adding or subtracting an

FIG. 1. Single quench at t=0. �i� Fully reflecting for t�0 �	
→
�, �II� fully transmitting for t�0 �	→0�.
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electron from either the left or right edge.43,45 Requiring that
the charged excitations generated by ei�g�L/R are bosons
�electrons� implies that they satisfy the �anti� commutation
relation sets g=m an even �odd� integer. The requirement
that the charge of the operator is precisely e forces the rela-
tion �=1 /m. Representations of the theory are local with
respect to the U�1� current and charged excitation �L/R
=ei�g�L/R which is identified with the electron �g=m odd� or
boson �g=m even�.

The QPC introduces backscattering at x=0, with the most
relevant term being the quasiparticle tunneling term

L� = 	�x�cos�����R − �L�� , �2.2�

where 	 is the tunneling strength. The charge densities at the
left and right edges are respectively

�L =
��

2�
�x�

L, �R = −
��

2�
�x�

R, �2.3�

Note that �L�x+2��=�L�x�+2���QL, so in particular the
electron operator is well defined provided QL is an integer;
hence QL carries the meaning of the number of quasiparticles
on the edge. In units of the electron charge e, the charge
carried by the edge is �QL.

We now perform the following transformation into the
odd and even basis:

�o�x,t� =
1
�2

��L�x,t� − �R�− x,t�� ,

�e�x,t� =
1
�2

��L�x,t� + �R�− x,t�� , �2.4�

the even boson �e decouples from the impurity, and we ig-
nore it in the rest of the paper. Note that �o/e are both left
moving. The odd and even charges are related to the original
L /R charges through �2Qo= �QL−QR� and �2Qe= �QL+QR�.

The experimental setting we wish to consider is one
where the two edges of the quantum Hall liquid are separated
initially. No bias is applied and the temperature is taken to be
zero. At some time, the two halves of the system are �sud-
denly� connected and we wish to consider the statistics of the
charge transferred from one side to the other upon this
change, i.e., a quantum quench. The system is then evolved
with the Hamiltonian with a Hilbert space described by states
with transmitting boundary conditions at the quantum point
contact.

Let P�q� be the probability that charge q is transmitted
through the point contact in time �t. Then one defines the
generating function ��	�=�q=−



 P�q�ei	q which encodes all
moments �or cumulants� Cm of the probability distribution
P�q�,

Cm = �− i�	�mlog ��	��	=0. �2.5�

In particular, the second moment C2 is related to the current
fluctuations. The generating function can be written as

��	� = 	
ei	q̂��t�,e−i	q̂�0��� , �2.6�

where the operators are ordered on the Schwinger-Keldysh
contour.7 This can also be written as a trace over a complete
set of states.

��	� = Tr��0U†ei	qUe−i	q� , �2.7�

where �0 is the initial density matrix and U is the time evo-
lution operator for time �t after the point contact is opened.
In Eq. �2.7� it should be understood that the trace is taken
over the initial states.

If the scattering time at the quantum point contact is short
compared with the entire time evolution, then it was shown
that ��	� can be written as7,46

��	� = det�1 + n�S†ei	qSe−i	q − 1�� , �2.8�

where n is the initial distribution of states and S is the
reflection-transmission matrix at the quantum point contact.
In Ref. 30, it was found that for noninteracting electrons, the
generating function is given by

��	� = e−�	2/2�C2, �2.9�

where C2= 1
�2 log� �t

� �..
In this work, we generalize this protocol to the �=1 /m

Laughlin states. We note that while the full counting statis-
tics has been found in many other strongly correlated sys-
tems with a static impurity via the thermodynamic Bethe
ansatz,14,15,17,47 the application of this method to finding time
and space dependent correlation functions is in general dif-
ficult and remains largely not understood.

We take a different approach in tackling this problem.
This relies on the realization that one should consider an
extended Hilbert space by introducing a boundary changing
operator to the edge theory and that physical charged excita-
tions in the initial Hilbert space are those conserving total
charge. In the next section, we examine the noise in �=1 /2
which can be refermionized and solved explicitly. We note
an interesting structure which we then extend to the other
Laughlin states at �=1 /m. In doing so, we calculate the
noise and full counting statistics for the Laughlin states.

III. NOISE AT FILLING FACTOR 1/2

We start our discussion with an exactly solvable case, the
bosonic quantum Hall effect at filling factor �=1 /2. Our
strategy is as follows: refermionizing, we first recast the
problem in terms of a quadratic fermionic action. Then, by
writing the fermionic field in terms of two real Majorana
fermion fields, we find that only one of the Majorana fermi-
ons interacts with the impurity. The two fixed points associ-
ated with the fully transmitting and the fully reflecting im-
purity, translate into antiperiodic and periodic boundary
conditions imposed on this Majorana fermion. This leads us
to identify the operator that takes the system between the two
fixed points as the � operator of the chiral Ising model.
Armed with this knowledge, we then proceed to use this
formalism to calculate the noise for the case of a quantum
point contact which is suddenly opened at time t=0.
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A. Majorana fermion representation

The odd boson theory can be refermionized in terms of a
fermion field � �see Appendix A� leading to the Hamiltonian

Ho =� dx�†�x�i�x��x� + �2�	�x����x�� + ��†�x�� .

�3.1�

The crucial step is that the Hamiltonian can be written in a
Majorana representation, �= ��1− i�2� /2, where �1 and �2
satisfy 
�i�x� ,� j�x���=2ij�x−x��. In this representation,
only �2 interacts with the impurity, as is clear by inspecting
the equations of motion,

i�ti�1 = i�xi�1,

i�ti�2 = i�xi�2 + 2�2�	��x� ,

i�t� = 2�2�	i�2�0� . �3.2�

Integrating the equations leads to the following boundary
condition across the impurity, �B4�	2,

�2�0+� =
i� + �B

i� − �B
�2�0−� . �3.3�

This boundary condition is continuously interpolating be-
tween the fully reflecting and fully transmitting boundary
conditions for the odd boson

�B → 
 �2�0+� = − �2�0−� ,

�B → 0 �2�0+� = �2�0−� . �3.4�

Similarly, at x=�, we have the boundary condition,

�2��� = �2�− �� , �3.5�

The problem is thus mapped to a single chiral Majorana
fermion on a circle of circumference 2�. For the reflecting
case we have antiperiodic �AP� boundary conditions, while
for the transmitting case, we have periodic �P� boundary con-
ditions.

The free Majorana field theory contains altogether three
primary fields: the identity field 1, the Majorana fermion
field �, and a � operator �known as the Ising twist field�
creating a branch cut on the Majorana fermion �. As before,
we shall label the two copies of fields present here by an
index i=1,2: 1i, �i, and �i. To go from periodic to antiperi-

odic boundary conditions on �2, we use the �2 operator to
create a branch cut on the fermion: we imagine that the edge
Majorana fermion encloses a “bulk” in which �2 operators
can be introduced, appropriately changing the boundary con-
ditions on the Majorana fermion. We thus identify the opera-
tor taking the system between the two fixed points associated
with the QPC as the �2 operator in the �2 Majorana fermion
field theory.

In particular, to go from antiperiodic to periodic boundary
condition, introduce two �2 operators in the “bulk” sur-
rounded by the �2 edge �see Fig. 2�. One of them then ap-
proaches the edge at x=0 and a bulk-edge coupling is intro-
duced. This coupling is mediated by virtual processes
involving the tunneling of topologically trivial modes be-
tween the bulk and the edge.48 Finally, when 	→
, the edge
circumvents the operator completely, and switches to AP
boundary conditions. In the sudden approximation, we can
imagine two spatially separated �2 operators introduced si-
multaneously: one inside the edge and the other outside.

B. Calculation of the noise

We assume that the QPC is initially closed, then at time
t=0 it is fully opened, and proceed to calculate the noise
produced in that situation.

The current operator through the junction can be defined
as the rate of transfer of charge between the two edges, mea-
sured by the odd boson

I = �t�o = i�H,�o� , �3.6�

where �o=�†�. Using the equations of motion, Eqs. �3.2�,
we can write the current in terms of the Majorana fermions
as

I =
i

2
�1�0���2�0+� − �2�0−�� . �3.7�

In the limits, �B→
 and �B→0, we get

Ib = �0 t � 0

i�1�0��2�0+� t � 0
� , �3.8�

where t=0 time of the quench, and Ib is what we call the
backscattered current.

In the following, we shall define the charge transmitted
through the junction during a time window starting at
t=−
 and ending at some arbitrary positive time �t,

FIG. 2. Boundary changing operator—fully transmitting to fully reflecting. Two �2 operators are drawn from the vacuum. Tunneling �of
strength 	� is introduced between one of the �2 operators and the edge. Finally, in the limit 	→
, the edge circumvents the �2 operator.
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Q�t = �
−


�t

dtIb�t� = �
0

�t

dtIb�t� . �3.9�

Since there is no bias, the net transferred charge is zero,
	Q�t�=0. However, there will be noise due to the opening of
the QPC. The noise is given by

	Q�t
2 � = �

0

�t

dt1�
0

�t

dt2
	�2�0�Ib�t1�Ib�t2��2�0��

	�2�0��2�0��
.

�3.10�

Besides its role in establishing a nonzero current operator,
the operator �2 also changes the boundary conditions on �2.
However, these boundary conditions �i.e., the effects of the
operator �2� will affect �2 only after a long time-scale set by
� /v. In the limit �→
 we can safely neglect the effects of
these boundary condition changing operators. Upon the in-
troduction of a UV cutoff , the short-time switching scale
needed to regulate the integral, the second cumulant C2 can
be obtained.

	Q�t
2 � =

�

2�2�
0

�t

dt1�
0

�t

dt2
1

� + i�t1 − t2��2 . �3.11�

The expression can be easily integrated to get

	Q�t
2 � =

�

2�2 log
�t2 + 2

2 . �3.12�

In the limit of large �t this reduces to

C2 =
�

�2 log
�t


. �3.13�

The essential point is that the theory of the two edge
states coupled by the local QPC must have a local boundary
changing operator �2 that takes the system from one fixed
point to the other. In particular, the operator �2 maps the
ground state of the system with a closed QPC to an energy
eigenstate of the same system but with the new boundary
conditions, an open QPC. The ensuing growth of the en-
tanglement entropy is due to the evolution of correlations of
the excitations in this state.42

C. Bosonic picture

The previous discussion can also be understood in terms
of the boson. This picture lends itself to generalization to the
other Laughlin states which are also described by free chiral
bosonic theories. Here, we show that from the bosonic pic-
ture, one can deduce that � operator must be introduced for
one of the Majorana fermions to change the boundary con-
dition from antiperiodic to periodic. We then argue that a
similar boundary condition changing operator can be in-
cluded in the bosonic theory.

One can understand the relationship between boson and
fermion boundary conditions and the nature of the twist op-
erator by examining the partition functions. Specializing to
�=1 /2, the Lagrangian becomes

L =
1

4�
�x�o��t − �x��o + 	�x�ei�o�x� + H.c. �3.14�

The boundary condition at the impurity site changes from
	→
 perfectly reflecting �Neumann boundary conditions� to
	→0 perfectly transmitting �Dirichlet boundary conditions�.
The Neumann boundary condition simply fixes the field �o
to be continuous across the boundary while the Dirichlet
boundary condition allows the field to be discontinuous.

Imposing Neumann boundary conditions at the ends of
the system for all times, the mode expansion for the odd
boson can be found. For Neumann �N� and Dirichlet �D�
boundary conditions at the origin, respectively,

�o�x,t� = �0 +
��

�
Qo�t − x� + i��

2 �
n�Z

�n

��n�
e−i�/�n�t−x� �N� ,

�o�x,t� = i��

2 �
r�Z+1/2

�r

��r�
e−i�/�r�t−x� �D� . �3.15�

The partition function in each sector can then be computed
for each set of boundary conditions and one finds

	 → 
: ZNN =
�3�q�
��q�

= ZAA
f ZAA

f ,

	 → 0: ZND =��2�q��3�q�
�2�q�

= ZPA
f ZAA

f , �3.16�

where Zij
f are partition functions for a single c= 1

2 holomor-
phic fermion with boundary conditions i in time and j in
space, A, antiperiodic and P, periodic. To go from 	→
 to
	→0, we see that exactly one Majorana fermion changes
antiperiodic to periodic boundary conditions in time. Now,
the partition function ZPA

f is also related to the partition func-
tion ZAA

f by an insertion of the fermion counting operator �
−1�F in the time direction. By a conformal transformation,
this operator is related to the spin operator of the Ising model
inserted in the space direction for one of the Majorana fer-
mions that compose the theory.49 This confirms the results of
the previous section.

While this identifies the boundary changing operator as
the spin operator in the Ising model, this is a special feature
of �=1 /2 state. At other filling fractions the boson can no
longer be fermionized, but what is independent of the filling
is the boson mode expansion and the partition functions
ZND , ZNN. To generalize the calculation of the noise beyond
�=1 /2, one should identify the boundary condition changing
operator in the bosonic theory that takes Neumann boundary
conditions to Dirichlet boundary conditions.

A priori, it may seem strange that a c=1 free bosonic
theory must include a boundary changing operator, but the
necessity of this operator can be seen at the level of the path
integral. The path integral should be time ordered on the
Schwinger-Keldysh contour, but by an analytic continuation,
one can regard the Schwinger-Keldysh contour as the time
surface for a conformal field theory40 �see Fig. 3�. In going
from the density matrix to the path integral formulation, one
must consider an extended Hilbert space of the Hamiltonian
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H which is spanned by states with all possible boundary
conditions. The boundary changing operators appear as uni-
tary operators that map whole sectors of the extended Hilbert
space with particular boundary conditions to sectors with
different boundary conditions.50 Details of this analytic con-
tinuation can also be found in Appendix C and in Refs. 40
and 41.

Folding the system on the �x ,��-world sheet, the local
quenching problem can be regarded as a boundary conformal
field theory with a changing boundary condition, Neumann
to Dirichlet at the origin. Such a boundary conformal field
theory was studied in the context of the x-ray edge singular-
ity and quantum wires.50,51 The Neumann boundary condi-
tion implies that the odd boson is continuous at x=0 while
the Dirichlet boundary condition implies that the odd boson
is discontinuous at x=0. As discussed by Affleck and
Ludwig,50 this can be written as

�o�0+,t � 0� = �o�0−,t � 0� ,

�o�0+,t � 0� = − �o�0−,t � 0� . �3.17�

This has an interpretation of a branch cut running on the
�x ,��-world sheet across which the odd boson is discontinu-
ous. In Ref. 50 it was noted that this branch cut corresponds
to an insertion of a dimension h= 1

16 operator at the quench
times, �1 ,�2.

Observing that the boundary conditions are independent
of the radius and following arguments by Ref. 50, it is sug-
gestive that there is dimension h= 1

16 twist operator in the odd
boson theory �independent of the boson radius� which
changes the boundary condition from Neumann to Dirichlet.
Given such generality, one wonders if there is a larger alge-
braic structure describing the local quench which includes
the boundary condition changing operator in its operator al-
gebra. In the sequel, we show that this structure is described
by an orbifold conformal field theory.

IV. EXTENSION TO OTHER LAUGHLIN STATES

Much of the previous discussion was limited to the �
=1 /2 case and was special in that it could be formulated in

terms of Majorana fermions. We argued previously that to
generalize the previous results to the other Laughlin states,
one needs to understand the theory in terms of free chiral
bosons and to work with an extended Hilbert space where a
dimension h= 1

16 boundary condition changing operator is in-
cluded. Such a Hilbert space is described by an orbifold con-
formal field theory, but before delving into orbifold theories,
we need to describe the initial Hilbert space of the system
which we will extend in the next section.

The total charge in the system is conserved in the quench-
ing process so that physical charged excited states are those
preserving the total charge. Initially, one knows that in the
limit of two decoupled edge states, the charged excitations
that conserve total charge are processes where an electron
tunnels from one edge to the other, Lint=�L

†�R+H.c. In the
even and odd basis, one can identify the vertex operator
e�i�2g�o with g=m as generating these excited states. By
charge conservation, the even sector does not have charged
excited states, and its Hilbert space is generated by the U�1�
current. However, charged excited states are allowed in the
odd sector by electron tunneling, so the physical Hilbert
space is generated by the U�1� current as well as the vertex
operator e�i�2m�o.

Representations of this Hilbert space can be constructed
with the requirement that they be local with respect to the
generators j=��o and V�=e�i�2m�o. This construction is
well known and extends the U�1� Kac-Moody �KM� algebra
to conformal field theories described by the Am series. The
primaries in the theory can be found in any standard text.49,52

1 ↔ h = 0,

j ↔ h = 1,

�m ↔ h =
m

4
,

�k ↔ h =
k2

4m
, k = 1, . . . ,m − 1, �4.1�

where �m=e�i�2m� and �k=e�ik/�2m�o.

A. Orbifolds

The twist operator � exists explicitly in the fermion
theory as spin operators, but by considering a Z2 orbifold of
the free Gaussian theory, a twist operator can be included in
the boson theory. On the �x ,��-world sheet of the odd boson,
one has that the �o�z�=−�o�z� as z approaches the branch cut
running between the two quench times. Imposing �o�0+�=
−�o�0−� on the �x ,�� sheet has consequences for the target
space.53 For a compact boson, �0�S1= �0,2�R�, this means
that the target space is identified under the action of the
discrete group Z2. The theory must include an operator which
takes �o→−�o.

As argued before, the theory describing the odd boson is a
conformal field theory in the Am series. To this theory, we
wish to allow for an antiperiodic boson and need to identify
the target space under the group Z2. One needs to consider
the orbifold Am /Z2. The partition function for orbifold theo-

FIG. 3. �a� The Schwinger-Keldysh contour can be regarded as
the time contour of a conformal field theory by an analytic continu-
ation. �b� The path integral can be thought of as over the entire
surface parameterized by �x ,�� with changing boundary conditions
at �1 and �2. Details in Appendix C and Refs. 40 and 41.
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ries under the group ZN was found by Ginsparg.54 Decom-
posing this partition function into Am characters and observ-
ing the transformation properties under the modular S :�→
−1 /� and modular T :�→�+1 transformation allows one to
deduce the primaries, the modular S matrix of the theory and
fusion rules.52,55 The primaries of the theory are,

1 ↔ h = 0,

j ↔ h = 1,

�m
�i� ↔ h =

m

4
, i = 1,2,

�k ↔ h =
k2

4m
, k = 1, . . . ,N − 1,

�1,2 ↔ h = 1
16 ,

�1,2 ↔ h = 9
16 . �4.2�

The Z2 transformation g acts on these representations as
g : ��k�→ ��2m−k� and so there are two fixed points ��0� and
��m�. The operators �m

�i� correspond to a sector invariant un-
der �o→−�o �i.e., �m

�1�=cos��2m�o�� and a sector that is
broken by the transformation �o→−�o �i.e., �m

�2�

=sin��2m�o��. Physically, one can understand them as the
tunneling and current operators for the odd boson, respec-
tively. The operator �k are invariant under the transformation
�k=cos� k

�2m
�o�.55 �1,2 correspond to the trivial and non-

trivial representations of Z2. For m even, it turns out that the
�i fields are self-conjugate while for m odd, �1 and �2 are
each others conjugates.55 Using the fusion rules �see Appen-
dix B� and decomposing the partition function ZDD in terms
of the characters of the Am /Z2 theory, it can be seen that the
�1,2 operators act as boundary changing operators. For m
even, fusing with �1 gives ZDD→�1

ZND→�1
ZNN while for m

odd one has ZDD→�1
ZND→�2

ZNN.56

For �=1 /2, the orbifold theory is A2 /Z2 which is isomor-
phic to the tensor product of two c= 1

2 Virasoro algebras �i.e.,
two decoupled Ising models�.55 This was exactly the behav-
ior observed before. The partition function for the odd boson
one observed could be decomposed into a product of c= 1

2
partition functions. In addition to this, the primaries of the
theory are

1 ↔ h = 0,

j ↔ h = 1,

�2
�i� ↔ h = 1

2 ,

�1 ↔ h = 1
8 ,

�1,2 ↔ h = 1
16 ,

�1,2 ↔ h = 9
16 . �4.3�

We see that the algebra naturally includes the twist fields �1,2
and �1,2 and that there is an operator corresponding to the
quasiparticle tunneling operator,

j � j = 1 �2
�i� � �2

�i� = 1 �2
�1� � �2

�2� = j ,

�i � �i = 1 + �2
�i�,

j � �k = �k. �4.4�

The operator �1 has a fusion rule consistent with its inter-
pretation as cos� k

2�o�.55

In addition, we see that the dimension h= 1
8 field we can

regard as the dimension of the two spin field composite.
Hence, one of the �’s originally at the center can be taken to
be in the trivial representation �1 of Z2 nonlocal with respect
to the fermion field �1 and the other in the nontrivial repre-
sentation and nonlocal with respect to the fermion �2 �see
Fig. 2�. When the interaction strength is switched, precisely
one spin field interacts with either �1,2 giving a twisted
boundary condition. This behavior was also seen in the odd
boson partition function and explicit calculation in Sec. III.

For �=1 /3, the theory is described by the orbifold theory
A3 /Z2 which corresponds to the Z4 parafermion theory.55

This can also be seen by comparing the fusion algebra and
operator content of the two theories,

1 ↔ h = 0,

j ↔ h = 1,

�3
�i� ↔ h = 3

4 ,

�1 ↔ h = 1
12 ,

�2 ↔ h = 1
3 ,

�1,2 ↔ h = 1
16 ,

�1,2 ↔ h = 9
16 . �4.5�

The fusion rules here are somewhat different than for m
even. The operator algebra of 1, j and �3

�i� now has a Z4
symmetry and it is given by

j � j = 1 �3
�i� � �3

�i� = j �3
�1� � �3

�2� = 1,

�i � �i = �3
�i� + �1,

�1 � �2 = 1 + �2. �4.6�

The fusion algebra for the �k vertex operators is
unchanged.55 The fusion rules and modular S matrices for
other filling fractions are given in general in Appendix B.

B. Calculation of the noise

One can then go about computing the noise in the back-
scattering current in the language of bosons. In the original
left-right basis, the backscattered current is given by

Ib = ��L
in + �R

in� − ��L
out + �R

out� , �4.7�

�i
out are charge densities measured at a position after the

point contact while �i
in are charged densities measured at a
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position before the point contact. In the rotated even-odd
basis, the backscattering current can be written as, Ib

=
�2�
2� ��x�−

o −�x�+
o� where �� denotes after and before the

point contact at x=0. To connect with the boundary confor-
mal field theory formalism, one can fold the system and re-
gard ���x�0, t� as a right moving wave �̄�̄�x�0, t�. The

backscattering current is then Ib=� �

8�2 � j̄o− jo� where x�0
now. This form has the advantage of explicitly involving a
primary field of the theory. Intuitively, the backscattered
charge is simply the difference between the �incoming� left
moving charge density and the �outgoing� right moving
charge density. The noise is,

	
Ib��2�,Ib��1���a = 	jo�i�1 + ��jo�i�2 + ���a + 	 j̄o�i�1 − �� j̄o�i�2 − ���a − 	jo�i�1 + �� j̄o�i�2 − ���a − 	 j̄o�i�1 − ��jo�i�2 + ���a

+ ��1 ↔ �2� , �4.8�

where 	¯ �a denotes a correlation function with boundary
condition a at x=0 �Neumann/fixed or Dirichlet/free� and
fixed �Neumann� at x=�. Here �1= t1− i� and �2= t2+ i� when
t1 is on the top contour and t2 on the bottom contour and vice
versa in the second contribution. � is a short distance cutoff,
�→0. In the presence of a boundary condition a these cor-
relation functions have been computed using methods of
conformal invariance and their relationship to the modular S
matrix of the bulk theory were found in Refs. 57 and 58,

	��z1���z2��a = 	��z1���z2���1 for xy � 0

Sa
�/S0

�

Sa
0/S0

0 for xy � 0, � �4.9�

where z1= i�1+x and z2= i�2+y and � is a primary field with
scaling dimension �. By knowing which primary field cor-
responds to boundary condition a one can use Cardy’s for-
mula to compute the correlation function in the presence of
the boundary.

For �=1 /2, we showed that the theory can be thought of
as A2 /Z2 which is isomorphic to a theory of two decoupled
Ising models. The boundary state corresponding to free
boundary conditions �Dirichlet� is associated with the pri-
mary � while the fixed boundary conditions �Neumann� is
associated with the identity or � primary operators. Using the
S matrix for the Ising model, its easy to see that the correla-
tion functions with boundary condition a have the prefactors,

fixed/N →
S0

1/S0
1

S0
0/S0

0 = 1,

free/D →
S1/16

1 /S0
1

S1/16
0 /S0

0 = − 1. �4.10�

For other filling fractions, the identification of boundary
states and boundary conditions is more complicated but we
find that a similar structure is present.

Since the characters for the Am /Z2 theory are known, the
partition functions ZNN and ZND can be decomposed into a
sum of characters from which one may identify the boundary
states.56,59 Note that here we worked with the T dual

�r→ 2
r � of the theory in Refs. 56 and 59 so that D↔N. For m

even, Neumann and Dirichlet boundary conditions, it was
found that the orbifold boundary states are,

�N� =
1

�4 2m
��0� + �j� +

1
�2

���m
�1�� + ��m

�2��� + �2�
k=1

m−1

��k�� ,

�D� =
1

�4 2m
��m�0� − �m�m� +�m

2
���m

�1�� − ��m
�2���� .

�4.11�

For m odd, the analogous states can be written down us-
ing the appropriate S matrix �see Appendix B�. From the
modular S matrix, one then can identify the Neumann bound-
ary condition with the highest weight state �k and the Di-
richlet �free� boundary condition with the � field. Note that
the boundary states above are not the usual boundary states
but are Z2 invariant linear combinations.56 However, the fact
remains that they transform in the ��k� and ��� representa-
tions, respectively. For �=1 /m one finds that it is generally
true that

fixed/N →
Sk

1/S0
1

Sk
0/S0

0 = 1,

free/D →
S1/16

1 /S0
1

S1/16
0 /S0

0 = − 1. �4.12�

For arbitrary �, one finds that in the limit �→0, �→0, the
noise from the local quench is given by

	
Ib��2�,Ib��1��� =
�

2�2

1

� + i�t1 − t2��2 , �4.13�

in agreement with the calculation for �=1 /2 so that the sec-
ond cumulant has a similar form as Eq. �3.11�.

A nontrivial check of these results can also be done by
considering the boundary condition on the odd currents. In
terms of the odd currents, the reflecting and transmitting
boundary condition were given by jo= j̄o and jo=− j̄o

respectively.51 Imposing either of these boundary conditions,
one sees that the left-left and right-right correlation functions
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are unaffected but the left-right correlation function changes
by a minus sign.

jo = j̄o; 	jo�z1� j̄o�z̄2�� =
1

2

1

�z1 − z̄2�2 ,

jo = − j̄o; 	jo�z1� j̄o�z̄2�� = −
1

2

1

�z1 − z̄2�2 , �4.14�

so that when the point contact is closed, the noise measured
is zero while when it is opened, the noise is nonzero. This is
in agreement with the results using the operator algebra of
the Am /Z2 orbifold. Note that this correlation function is spe-
cial in that the boundary condition involves the primary
fields jo and j̄o that appear in the desired correlation function
but Eq. �4.9� is more general than this.

While the second cumulant can easily be shown to grow
logarithmically in time, our result shows that the coefficient
of this logarithm depends on the modular S matrix elements
of the theory and not just to its central charge, so that even
for c=1 the second cumulant does not fully give the en-
tanglement entropy.

C. Calculation of the full counting statistics

The full counting statistics �FCS� is the generating func-
tion for the moments of the charge transferred between two
reservoirs through a constriction. In Ref. 30, the FCS was
calculated for the process of opening and closing the QPC,
with the result that the distribution function for the transmit-
ted charge is purely Gaussian. Here we shall extend our
methods developed in the previous sections to find the FCS
in the interacting case and conclude that the noninteracting
result is in fact robust to the presence of interactions. It is
plausible that even in the interacting case, there exists a
simple relation between the FCS and the entanglement en-
tropy.

To avoid boundary effects, it is convenient for our pur-
poses to consider a Corbino �annular� geometry, with a single
QPC inducing backscattering between the edges. In this ge-
ometry, we should actually reverse the protocol appearing in
previous sections: first the QPC is open, then is quickly
closed, and remains in this state during a time period �t, at
the end of which it is opened again. Going to the odd/even
basis for the two edge bosons, the charge carried by the odd
boson, Qo=�dx�o=

��
2� ��o�0+�−�o�0−��, is controlled by the

singularity induced by the branch cut for the closed QPC
�assumed to be located at x=0�. The full counting statistics is
then given by the following correlation function:

��	� = 	
ei	Qo��t�,e−i	Qo�0��� , �4.15�

which, using the observation above, can be reduced to the
calculation of vertex operators at the vicinity of the QPC.
This leads to the main result,

��	� = exp�−
	2

2

�

2�2�log�2 + �t2

2 ��� , �4.16�

which is the typical generating function for a Gaussian dis-
tribution. Consequently, only the second cumulant �i.e., the
noise� is nonzero. Interestingly, except for the explicit depen-
dence on the filling factor �, the full counting statistics has
the same form as the noninteracting electron case.

Writing the boson in the even and odd basis and folding
the system, this problem can be mapped onto the boundary
sine-Gordon model. In the basis of kink and antikink solitons
of charge q and −q, respectively, distribution functions can
be found via the thermodynamic Bethe ansatz for the entire
range of 	.15,17 The problem is then similar to the noninter-
acting electron problem only the particles are collective
modes rather than the original electrons. However, in this
picture, the full counting statistics is difficult to compute.
The reflection and transmission coefficients of the time de-
pendent scattering matrix7,30 are difficult to write in the kink
and antikink basis.

V. ENERGY-MOMENTUM NOISE IN THE QUANTUM
ISING MODEL

Although in previous sections we showed that the noise
generated by a quench can also evolve logarithmically with
time, we will show now that this is not always true. This is in
contrast to the static entanglement entropy which depends
logarithmically on the size of the observed region20,60,61 and
the dynamic entanglement entropy which evolves logarith-
mically with time.42

Consider a one-dimensional quantum Ising model that can
be split in two by changing with time the strength of just one
link. This effectively implies a change in boundary condi-
tions at that link. We use the Majorana fermion description of
the critical quantum Ising model,

L = i�̃R��t − �x��̃R + i�L��t − �x��L, �5.1�

where �L ��R� is a left going �right going� Majorana fermion
and �̃R�x�=�R�−x� was flipped. At the center of the Ising
chain �x=0� we modify the link strength, which translates in
the effective Fermion description to a coupling to the local
energy density operator �=�L�R at the same point

L� = i	�x��L�R. �5.2�

This marginal perturbation leads to the following relation
between the fields on the two sides of the impurity

��̃R�0+�
�L�0+�

� = M��̃R�0−�
�L�0−�

� , �5.3�

with

M =
1

1 + �	

2
�2�1 − �	

2
�2

− 	

	 1 − �	

2
�2� . �5.4�

When 	 is fine tuned to the point 	=2, M becomes com-
pletely off-diagonal M→−i�y. When 	→0, M approaches
the identity matrix, M→ I.
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The quantum Ising model and its effective field theory,
the free Majorana fermion, has a �discrete� global Z2 sym-
metry. Contrary to the Luttinger-type models which have a
globally conserved U�1� charge and a locally conserved �di-
mension one� charge current, in the case of the quantum
Ising model the only global conservation law is the energy-
momentum and its locally conserved �dimension two�
energy-momentum current. In contrast with the Luttinger
model where the quantum quench does not change the total
charge, in the Ising model the quantum quench changes the
Hamiltonian and hence the total energy. Although the
energy-momentum tensor of the Majorana fermion field
theory �and of the Ising model� remains locally conserved
everywhere except at the location of the quantum impurity,
these physical differences lead to a distinct asymptotic time
dependence of the noise in the energy-momentum current
shown below.

The energy density along the edge is defined by

�E�x� = �Li�x�L − �̃Ri�x�̃R. �5.5�

The rate of backscattering of energy by the modified link is

IE = �E�0+� − �E�0−� . �5.6�

Using the relations above, for the case that the link is fully
transmitting �	=0�, the heat current is zero as the contribu-
tions on the two sides of the link cancel. In the limit of a
fully reflecting link, we get �E�0+�=−�E�0−� and the two con-
tributions add up.

Since the scaling dimension of the energy current is 2 we
get the following expression for the thermal noise E2:

E2 =
1

�2�
0

�t

dt1dt2� 1

t1 − t2 + i
�4

=
1

�2

32�t2 + �t4

32�2 + �t2�2 .

�5.7�

For large �t, the thermal noise approaches a nonuniversal,
cutoff dependent, value

E2 �
1

3�22 +
1

�2

1

�t2 . �5.8�

VI. CONCLUSIONS

In the previous sections we identified an extended theory
of the bosonic Luttinger description of the quantum Hall
edge states in the presence of an impurity. The extended
theory, being an Am /Z2 orbifold theory �for �=1 /m�, explic-
itly contains an operator inducing the transition between the
zero backscattering and fully backscattering fixed points of
the impurity. In particular, for �=1 /2 the extended theory
decouples into two copies of Z2 parafermions, whereas for
�=1 /3 it coincides with Z4 parafermions instead. The pres-
ence of the primary field in the algebra which induces the
transition between the two fixed points at the impurity dem-
onstrates that in the sudden approximation equilibrium is
maintained through each process of opening or closing of the
QPC, and that no transient effects are expected.

Using these methods we calculated the FCS for the inter-
acting Luttinger liquid for the process of a sudden opening

�at t0� then closing �at t1� of the QPC. Only the second cu-
mulant of the transferred charge is nonzero and its logarith-
mic dependence on t1− t0 suggests that a relation between the
entanglement entropy and the FCS should exist even in the
interacting case. In that sense, the noise “measures” the en-
tanglement entropy. The only difference from the noninter-
acting case is the explicit appearance of the filling factor in
the noise.

In a more general setting, however, the relation between
the FCS and the entanglement entropy does not seem to be
structural. First, it requires the presence of a conserved cur-
rent with dimension 1 �essential for a logarithmic behavior of
the correlation function�, and of an associated and strictly
conserved global charge. In contrast, the energy-momentum
noise through a weak link in the one-dimensional Ising
model does not reproduce, or even has the same form, as the
entanglement entropy. We discuss this case briefly in Sec. V.
Also, for any quantum Hall state which contains neutral edge
modes, the generated entanglement entropy is proportional to
the total central charge, c, but in the absence of an impurity
the noise involves only the pure current present in the charge
carrying c=1 theory alone. This can be amended by adding
the central charge explicitly into the relation between the
noise and the entanglement entropy, but this argument seems
to be ignoring the mechanisms that create entanglement in
the neutral theory. Moreover, even for the simple Luttinger
case the central charge does not appear in the noise �which
depends only on the fusion rules and the conformal dimen-
sions of the CFT� while it certainly appears explicitly in the
entanglement entropy. Indeed, our results show that the noise
generated is a measurement of dynamical entanglement and
not of the static entanglement that is associated with the
observation of a subsystem in an eigenstate of the full
system.42

Interestingly, we also find that the time dependent corre-
lation functions have a universal scaling behavior as in the
case of the global quench.41 However, the universal behavior
is characteristic of an orbifold theory of the original system.
It may be of interest to study this experimentally where cor-
rections to scaling are sure to occur. The flow away from
criticality would presumably involve the more exotic fusion
rules.

In summary, in this paper we have computed the noise of
the tunneling current generated by a quantum quench of a
point contact in a fractional quantum Hall fluid. This was
done by explicit solution for the bosonic Laughlin state at
�=1 /2 and by conformal field theory methods for a general
Laughlin state. We have also computed the growth of the
entanglement entropy due to the quantum quench. We found
that even though the time dependence of the noise has the
same form as the entanglement entropy the latter has a more
intricate dependence on the properties of the conformal field
theory and the Hilbert space of the edge state. This result
suggests that the Klich-Levitov protocol may not generally
supply a procedure to measure the entanglement entropy.
The question of measuring the entanglement entropy remains
open.
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APPENDIX A: DETAILS OF �=1 Õ2

In this appendix we give some details of the refermion-
ization technique used in the exact solution of the �=1 /2
�bosonic� quantum Hall effect. For �=1 /2, the Lagrangian
for the odd boson in the presence of a QPC at x=0 is given
by �v1�

L =
1

4�
�x�o��t − �x��o + 	�x�ei�o�x� + H.c., �A1�

where the odd density �o�t ,x�= ��R�t ,x�−�L�t ,−x�� /�2. We
refermionize by defining45

��t,x� =
1

�2�
:ei�o�t,x�: , �A2�

so that 
��t ,x� ,�†�t ,x���=�x−x�� holds. The full Hamil-
tonian can now be written as

Ho =� dx�†�x�i�x��x� + �2��x��	��x�� + 	���†�x�� .

�A3�

Note that �o�x�=�†�x���x�, and 
� ,��=2. Here � is a Klein
factor which appears in a careful handling of the zero modes
of the boson field.

Assuming for simplicity 	=	��R, the equations of mo-
tion can be found and are given by

i�t� = i�x� − �2�	��x� ,

i�t�
† = i�x�

† + �2�	��x� ,

i�t� = 2�2�	��†�0� − ��0�� . �A4�

The equations of motion can be solved by expanding the
fields in modes as �see e.g., Ref. 62�

��x,t� = �
�

ei��x+t��A� x � 0

B� x � 0
� ,

�†�x,t� = �
�

ei��x+t��A−�
† x � 0

B−�
† x � 0

� ,

��t� = �
�

ei�t�� �A5�

The modes satisfy the following relations, derived by inte-
grating the equations of motions around x=0,

i�B� − A�� = �2�	��,

i�B−�
† − A−�

† � = − �2�	��,

��� = 2�2�	� 1
2 �A� + B�� − 1

2 �A−�
† + B−�

† �� . �A6�

Defining �B4�	2, we get

� B�

B−�
† � =

1

i� − �B
� i� − �B

− �B i�
�� A�

A−�
† �  M�� A�

A−�
† � .

�A7�

So that when �B→0 �fully transmitting QPC�, M�→ I, while
when �B→
 �fully reflecting QPC� M�→�x.

APPENDIX B: MODULAR S MATRIX AND FUSION
RULES AT LEVEL 1 Õ�=m

With the convention that the matrix takes the vector la-
beled by �1, j ,�m

�j� ,�k� ,� j ,� j� to the same vector with j→ i,
k→k�, and �ij =2ij −1, the modular S matrix for m even can
be written as

Sm,even =
1

�8m�
1 1 1 2 �m �m

1 1 1 2 − �m − �m

1 1 1 2�− 1�k� �ij
�m �ij

�m

2 2 2�− 1�k 4 cos �
kk�

2m
0 0

�m − �m �ij
�m 0 ij

�2m − ij
�2m

�m − �m �ij
�m 0 − ij

�2m ij
�2m

� , �B1�

while for m odd, the modular S matrix takes a slightly different form,
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Sm,odd =
1

�8m�
1 1 1 2 �m �m

1 1 1 2 − �m − �m

1 1 − 1 2�− 1�k� i�ij
�m i�ij

�m

2 2 2�− 1�k 4 cos 2�
kk�

2m
0 0

�m − �m i�ij
�m 0 ei��ij/4�2m − ei��ij/4�2m

�m − �m i�ij
�m 0 − ei��ij/4�2m ei��ij/4�2m

� . �B2�

For m even, the elements 
1, j ,�m
�i�� form a Z2�Z2 subalge-

bra. One has

j � j = 1,

�m
�i� � �m

�i� = 1,

�m
�1� � �m

�2� = j . �B3�

The twist operators have the fusion rules

�i � �i = 1 + �m
�i� + �

k,even

�k,

�1 � �2 = �
k,odd

�k. �B4�

For m odd, the elements 
1, j ,�m
�i�� form a Z4 subalgebra.

j � j = 1,

�m
�1� � �m

�2� = 1,

�m
�i� � �m

�i� = j , �B5�

and for the twist fields,

�i � �i = �m
�i� + �

k,odd

�k,

�1 � �2 = 1 + �
k,even

�k. �B6�

The fusion rules for the vertex operators �k are the same for
m even or odd.

�k � �k� = �k+k + �k−k�,

�k � �k = 1 + j + �2k,

�m−k � �k = �2k + �m
�1� + �m

�2�,

j � �k = �k. �B7�

The fusion rules for the �i fields can be found easily by
applying j��i=�i.

APPENDIX C: SCHWINGER-KELDYSH AND
ENTANGLEMENT ENTROPY

The nonequilibrium problem of locally quenching the sys-
tem at the point contact is best dealt with in terms of the
density matrix formalism. Initially, the system has a density
matrix �0= ��0�x��	�0�x�� where the states ��0�x�� are eigen-
states of the Hamiltonian with Neumann boundary condi-
tions imposed at the point contact and ends of the system. At
time t=0, the point contact is opened and the boundary con-
dition at the boundary is changed to Dirichlet.

After the quench, the density matrix is given by

	���x����t����x�� = 	���x��U†�t��0U�t����x��

= 	���x��e−itH−�H��0�x��

�	�0�x��eitH−�H���x�� , �C1�

where the regulator � has been included to adiabatically cut-
off the high momentum modes. Here, H is the Hamiltonian
with transmitting boundary condition. The first term de-
scribes forward evolution from the initial state to the final
state ���x�� while the second describes the time reversed
evolution back to the initial state.

Following Refs. 40 and 41, the Schwinger-Keldysh time
contour can be thought of as the time contour for a confor-
mal field theory. On the forward branch, one continues
�=−�− it, ��x , t�→��x ,��. Now, �→−i�, Wick rotating, this
can be thought of as propagating the initial state for time � to
the final state.

	���x��e−itH−�H��0�x�� = 	���x��e−iH���0�x�� . �C2�

One can think of the density matrix in terms of a path inte-
gral, but to do so, a complete set of states needs to be intro-
duced. Here we work with the extended Hilbert space which
is spanned by states with all possible boundary conditions.
Inserting a complete sets of states �d�i��i�	�i� at each time
slice �i and also a complete set of conjugate states
�d�i��i�	�i�.
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	��x��e−iH���0�x�� =� �
i=1

N

d�i�
i=1

N

d�ie
i�iH��i,�i�ei�i+1�i+1e−i�i+1�i =� D�e�d�dxL���x,������x,� = 0� − ��x�����x,�1� − �0�x�� .

�C3�

Now, d�=−idt so that this is the Euclidean path integral with
the boundary condition that at �1=−�− it, the field takes
value ��x ,�1�=�0�x� and ��x ,��=��x� at �=0. A similar set
of manipulations can be performed for the backward branch
as well. At the point t=0, they differ on a set of measure zero
so that the path integral can be thought of as over the entire
surface parameterized by �x ,�� with changing boundary con-
ditions at �1 and �2. At the end of the calculation, one should
continue back to real time t and take the limit �→0.40 Here,
before the quench t�0, we apply reflecting boundary condi-
tions and after the quench, we have transmitting boundary
conditions. In the sequel, we denote this surface, with chang-
ing boundary conditions in time at x=0 as �.

To compute the entanglement entropy, one uses the rep-
lica trick to compute, Tr �A

n . The reduced density matrix can
be visualized as stitching together the cylinder on the B side
while leaving the A side open. Multiple copies of �A are
stitched cyclically on the cut.40,41 In Ref. 20, it was shown
using general transformation properties of the stress energy
tensor that this branch cut amounts to a twist operator �n�z�
insertion on the Riemann surface with conformal dimension,
�n= c

24�n−1 /n�. The stitched surface amounts to computing
the correlation function of the twist operator.

Tr �A
n = 	�n�z = 0���. �C4�

Here 	 . . . �� denotes an average taken over the surface with
changing boundary conditions. To compute this correlation

function, we use the Zhukowski mapping which avoids the
algebraic structure discussed in the text. The advantage is
that including an n-twist field as part of an extended Hilbert
space is difficult and is left as an open question here. Using
the mapping,

w =
1

�
�z + �z2 + �2� , �C5�

the surface � is mapped to the right half plane with a single
boundary condition, ��. The correlation function on � is
related to the correlation function on ��

	�n�z��� = �dw

dz
�−�n

	�n�w����. �C6�

Differentiating with respect to n at n=1 yields the entangle-
ment entropy

S�t� =
c

6
log� t2 + �2

a�/2 � + c̃1, �C7�

where c̃1 is a nonuniversal constant and a a lattice cutoff.40

In the limit t�� the entanglement entropy becomes

S�t� =
c

3
log

t

a
+ k̃1, �C8�

so that the amount of entanglement grows logarithmically in
time after the quench at t=0 and is proportional to the central
charge.
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